skip to main content


Search for: All records

Creators/Authors contains: "Pateras, Anastasios"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Defects in strongly correlated materials such as V 2 O 3 play influential roles on their electrical properties. Understanding the defects' structure is of paramount importance. In this project, we investigate defect structures in V 2 O 3 grown via a flux method. We use AFM to see surface features in several large flake-like particles that exhibit characteristics of spiral growth. We also use Bragg coherent diffractive imaging (BCDI) to probe in 3 dimensions a smaller particle without flake-like morphology and note an absence of the pure screw dislocation characteristic of spiral growth. We identified and measured several defects by comparing the observed local displacement of the crystal, measured via BCDI to well-known models of the displacement around defects in the crystal. We identified two partial dislocations in the crystal. We discuss how defects of different types influence the morphology of V 2 O 3 crystals grown via a flux method. 
    more » « less
  2. Abstract

    The discovery of topological Hall effect (THE) has important implications for next‐generation high‐density nonvolatile memories, energy‐efficient nanoelectronics, and spintronic devices. Both real‐space topological spin configurations and two anomalous Hall effects (AHE) with opposite polarity due to two magnetic phases have been proposed for THE‐like feature in SrRuO3(SRO) films. In this work, SRO thin films with and without THE‐like features are systematically Investigated to decipher the origin of the THE feature. Magnetic measurement reveals the coexistence of two magnetic phases of different coercivity (Hc) in both the films, but the hump feature cannot be explained by the two channel AHE model based on these two magnetic phases. In fact, the AHE is mainly governed by the magnetic phase with higherHc. A diffusive Berry phase transition model is proposed to explain the THE feature. The coexistence of two Berry phases with opposite signs over a narrow temperature range in the high Hc magnetic phase can explain the THE like feature. Such a coexistence of two Berry phases is due to the strong local structural tilt and microstructure variation in the thinner films. This work provides an insight between structure/micro structure and THE like features in SRO epitaxial thin films.

     
    more » « less
  3. The ferroelectric domain pattern within lithographically defined PbTiO 3 /SrTiO 3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron X-ray nanobeam diffraction reveals that the spontaneously formed 180° ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of X-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20° with respect to the edges. Computational studies based on a time-dependent Landau–Ginzburg–Devonshire model show that the preferred direction of the alignment results from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive. 
    more » « less